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Transformation toughening 
Part 2 Contribution to fracture toughness 

F. F. L A N G E  
Structural Ceramics Group, Rockwell International Science Center, Thousand Oaks, 
Cafifornia 91360, USA 

Two approaches are taken to determine the contribution of a stress-induced phase trans- 
formation to the fracture toughness of a brittle material. Both approaches result in an 
expression for the critical stress intensity factor, Kc, of 

[ 2REcVi(IAGCI -- AUsef)I a/2 
Ko = K20 + I1 - -v~)  ' 

where K 0 is the critical stress intensity for the material wi thout  the transformation 
phenomenon, ( lAG ~ [ --  Usef) is the work done per unit volume by the stress field to 
induce the transformation, Eo and vc are the elastic properties, Vi is the volume-fraction 
of retained, high-temperature phase and R is the size of the transformation zone assoc- 
iated with the crack. It is assumed that only those inclusions (or grains) close to the 
free surface of the crack wil l contribute to the fracture toughness; thus, R ~ the inclusion 
size. The chemical free-energy change associated with the transformation, [AG ~ I, wil l 
govern the temperature and alloying dependence of the fracture toughness. 

1. Introduction 
Part 1 [1] of this series of papers described the 
thermodynamics of the constrained phase trans- 
formation with particular emphasis on the effect 
of the inclusion size. In Part 2, two different 
approaches, . those of Griffith and Irwin, will be 
used to determine the contribution of a stress- 
induced phase transformation to the fracture 
toughness of a brittle material. As in Part 1, 
special reference will be made to the Zr02 (tetra- 
gonal) -+ Zr02 (monoclinic) transformation. 

2. The approach of Griffith 
In this approach [2], the total energy of a system, 
defined as a cracked body and the applied load, 
is determined as a function of the crack area. The 
critical condition for crack extension, as first 
defined by Griffith, corresponds to the maximum 
in the total energy against crack-area function. To 
carry out this analysis, first, the different contri- 
butions to the total energy that change as a func- 
tion of crack area are determined and summed, 
i.e., strain and surface energies of the body and the 
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potential energy of the load. The condition for 
crack extension is then found by determining the 
maximum in the total energy against crack-area 
function. For the needs of the present analysis, 
the analysis can be simplified by choosing a crack 
and loading system in which all of the required 
functions, except the one associated with the 
stress-induced transformation, are already known. 
The penny-shaped crack under an applied tensile 
load first analyzed by Sack [3] was chosen for this 
analysis. 

Fig. 1 illustrates a section of the cracked body 
under tensile 10ad which contains a uniform dis- 
persion of untransformed inclusions of volume- 
fraction, Vi. It is assumed that the stress-field 
associated with the crack-front has caused inclu- 
sions to transform. As the crack extends and the 
stresses within the previously transformed zone 
decrease, inclusions that have lost some constraint 
by being either traversed by the crack or in close 
proximity to the new fracture surfaces will remain 
in their transformed state. This process leads to a 
transformation zone which surrounds the crack, 
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Figure 1 Section of a penny-shaped crack of radius c 
within a stressed composite containing inclusions. The 
shaded inclusions have been transformed during crack 
extension. 

as shown in Fig. 1. Only those inclusions which 
remain transformed will contribute to the non- 
recoverable work done by the loading system to 
stress-induce the transformation. Since the inclu- 
sions must lose constraint to remain in their 
transformed state once the stress field of  the 
crack moves, the size of the transformed zone, 
R,  is approximately equal to the inclusion size,D. 

Following the solution of  Sack [3] to this same 
problem without the transformation phenomena, 
the increase in free energy of  the body due to new 
crack surfaces, Us, is 

Us = rrc2Go, (1) 

where C is the crack radius and Go is the critical 
strain-energy release rate associated with the 
formation of  new surface. The increase in strain 
energy due to crack extension, Use, is 

8(1 2 2 a - -  Pc )Oa  C 
G o  - , ( 2 )  

3Ee 

where Oa is the applied tensile stress and E c and ve 
are Young's modulus and Poisson's ratio of  the 
composite material, respectively. The work done 
by the loading system, Wa, i.e., the decrease in 
the potential energy of  the load, is 

16(1 -- ve2)Oa2e 3 
W l  = - -  (3) 3G 

An additional term arises when the transfor- 
mation phenomena is included in the fracture 
process. Recognizing that the volume of  the 
transformed zone is 2rrR(c + R)  2 --~ 2rrRc 2, this 
additional term is the work done by the loading 
system to form the transformed zone: 

W2 = -- 2rrRc 2 WVi, 

where W is the work per unit volume of trans- 
formed material to induce the transformation. The 
minimum value o f  W is determined by 

AGt-+ m = -- AG e + AUse f -  W = 0, (4) 

where AG e is the chemical free-energy change for 
the reaction ZrO2 (tetragonal) -+ ZrO2 (mono- 
clinic), AUse is the change in strain-energy assoc- 
iated with the transformation and ( 1 - - f )  is the 
loss of  strain-energy due to the loss of  constraint 
imposed on the inclusions during crack extension. 
Thus, 

W = - - A O  c + a G o  f (5) 
and* 

W2 = 21rRc 2 Vi(IAGCl -- A U s d ) .  (6) 

Summing Equations 1 to 3 and 6 gives the total 
energy of  the system as a function of  crack length: 

U = rrc 2 Go + 21rRc 2 Vi( I AGCl -- AUsef) 

8(1 2 2 a - -  Pc )UaC 
- -  ( 7 )  

3Ee 

The condition for crack extension is determined 
by setting 6 U/Sc = 0, which can be used to define 
the contribution of  the stress-induced transfor- 
mation to either the strength-crack-size relation 

[ TrEc(Go + 2R Vi( I AGe' -- AUsef ) )  ] 1/2 
~ = 4(1 -- v2)c 

( 8 )  

or the critical stress-intensity factor 

2 
g e = - -  O C 1/2 

7r l /2  e 
(9) 

= [Kg + 2RViEe( IAGCl- -AUse f ) ]  1/2 

t ' 
where K0 = [(GoEc)/(1 -- v~)] 1/2 is the critical 
stress-intensity factor of  the material without the 
transformation phenomenon. 

*The absolute brackets are used to indicate that the sign of AG e has already been defined as negative in Equation 4 
over the temperature range of interest. 
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3. The approach of Irwin 
The same subject can be viewed with the approach 
of Irwin (4) where a force field is imposed on a 
stressed crack-tip and the work required to close 
it by a unit length is calculated. Irwin showed that 
the work per unit length of crack closure is equi- 
valent to the net work dissipated per unit length 
of crack extension, ~(Use --  W1)/~c,  as calculated 
through the Griffith approach. Fracture will take 
place when a(Use--W1)fi)c>~Ge, termed the 
critical strain-energy release rate. The major 
difference between the two approaches is that, in 
calculating the net work dissipated, Irwin only 
needs to consider the stress-field in the vicinity 
of the crack-tip, whereas the Griffith approach 
requires complete knowledge of the stress state 
in the system. 

To apply the Irwin approach, let the unit of 
crack to be considered closed have traversed a 
transformed inclusion, as shown in Fig. 2a. The 
work to close this unit of crack can be broken 
into two parts, one concerned with the trans- 
formation, AWt, and one concerned with crack 
closure, AW e . The first force field applied would 
revert the fractured inclusion back to its untrans- 
formed state, as shown in Fig. 2b. The work 
performed by this first force field per unit volume 
of transformed material is 

W = I A G e I - - A U s J ,  (10) 

where [AGe[ is the change in chemical free-energy 
to revert the ZrO2 inclusion to its tetragonal 
structure from its monoclinic structure. AUse is 
the strain-energy associated with the transfor- 

mation, and ( 1 - - f )  is that portion of the strain- 
energy relieved during fracture. The total work 
done on all inclusions within the volume 2RAc per 
unit crack length is 

AWt = 2RAcViW = 2RVi(IAGel- AUsef)Ac. 

(11) 

Once the inclusions have reverted to their un- 
transformed state, the strain energy associated 
with the inclusions disappears and the crack now 
looks like any ordinary crack in a two:phase 
material. At this point, the second force-field can 
be applied, as defined by Irwin, to close the crack 
by the unit length Ac, as shown in Fig. 2c. The 
work performed in this operation is 

AWe = a0Ac , (12) 

where Go is the critical strain-energy release rate 
for the composite material without the trans- 
formation phenomenon. 

The total work for crack closure per unit crack 
length which also reverts the inclusions to their 
initially untransformed state is 

AW AWe t- AWt 
Ac Ac Ac 

= Go + 2RVi(IAGCI--Afscf) .  (13) 

Thus, the contribution of the stress-induced 
transformation to the critical strain-energy release 
rate of the composite can be expressed as 

Ge = Go + ?J~Vi(IAGel--AUseJ 0 (14) 

or expressed as the critical stress-intensity factor 

l 

(b) t 
Figure 2 Crack under fixed grip 
conditions which has (a) inter- 
sected a transformed inclusion 
(shaded). (b) The first force- 
field reverts the inclusion to its 
untransformed state and (c) the 
second force-field closes the 
crack by a unit length, Ac. 
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=[ eca ] 
Ko 

[K 2 + 2RViEc(IAGel- AUsef)] x/2 
[ 

(15) 

4. Discussion 
As expected, both approaches have led to the same 
expression for the critical stress-intensity factor of 
a material containing inclusions that can undergo a 
stress-induced transformation. The expressions 
show that the contribution of the stress-induced 
transformation can be maximized by maximizing 
(a) the volume-fraction, Fi, of inclusions fabri- 
cated in their untransformed state, (b) the elastic 
modulus, Ee, of the composite, (c) the factor 
( IAGe l -  AUsef) and (d) the size of the transfor- 
mation zone, R, associated with the propagating 
crack-front. Each of these factors will be discussed 
in the following paragraphs. 

Maximizing the volume-fraction would result in 
a single-phase polycrystalline material, e.g., tetra- 
gonal ZrO2. Here, the inclusions could be defined 
as individual grains, surrounded by neighbouring 
grains of different misorientations which define 
the matrix. Each of the neighbouring grains con- 
strain one another from undergoing a stress-free 
transformation by their anisotropic transformation 
strains. Thus, a single-phase polycrystalline material 
can be treated in the same manner as that described 
above. 

The elastic modulus of the composite can be 
increased by choosing a chemically compatible 
second-phase with a higher elastic modulus. For 
the case of ZrO2, A12Oa, with a modulus approxi- 
mately twice that of ZrO2, would be a desirable 
choice. However, adding a second phase to in- 
crease the modulus would, at the same time, 
decrease the volume-fraction, Vi, of the toughening 
agent. One would, therefore, be concerned with 
the product of ViEe, Equation 15, in optimizing 
K e. If it is assumed that the composite modulus 
is governed by the rule-of-mixtures, E e ~ 'EiV i 4- 
E r a ( 1 -  Vi), then the product would have the 
form: 

ViEe = ViEi[M - V~(M-- 1)], (16) 

where M = E m [ E i ,  the ratio of the matrix (m) 
and the inclusion (i) Young's moduli. Differ- 
entiating Equation 16 with respect to Vi gives 

a(ViEo) 
- -  - E i [ M - -  2 V i ( M - -  l)], (17) aE 

which shows that the maximum in the product 
relation occurs at Vi = l ,  when M~< 2, i.e., the 
greatest toughness, with other factors constant, 
should be obtained for a single-phase material. 
I f  M > 2, the toughness could be optimized when 
Vi < l .  On the other hand, i f  the objective is to 
toughen a matrix-phase (e.g., toughening Al2Oa 
with ZrO2), Equation 16 shows that more tough- 
ening is obtained for a given volume-fraction 
the greater is the modular ratio. That is, small 
volume-fractions (e.g., Fi < 0.3) of the toughen- 
ing agent will produce greater results the greater 
is the modulus of the matrix material. 

The dependence of fracture toughness on 
temperatures and alloy content will be governed 
by the factor (IAGel--AUsef). This is because, 
relative to other factors, the chemical free-energy 
change, AG e , exhibits the greatest change with 
temperature and alloying content. For the 
ZrO2(t)-+ZrO2(m) reaction, IAGel decreases 
with increasing temperature and alloying (e.g., 
Y2Oa, CeO2, etc.) content. Thus, for this trans- 
formation, the fracture toughness is expected to 
decrease with increasing temperature as the factor 
( IAGCl-  AUse/) decreases to zero. Similarly, Kc 
will decrease as the alloy content in ZrOz(t) is 
increased. That is, fracture toughness will be opti- 
mized at the lower temperatures and for the least 
alloy content. The temperature where the contri- 
bution of the stress-induced toughness disappears 
will depend on the magnitude of AUse f. Pheno- 
mena that help relieve strain-energy during the 
fracture, e.g., twinning, will decrease the value of 
f and thus increase the temperature at which the 
contribution of the stress-induced toughness 
disappears. 

The major assumption used in the model to 
derive the Ke-expressions was that the size of the 
transformation zone, R, was determined by the 
close proximity of the inclusions to the free 
surface formed during fracture. That is, inclusions 
transformed by the stress-field would only remain 
in their transformed state once the stress field of 
the crack passes, if much of their constraint was 
lost during crack extension. This assumption 
leads to the hypothesis that the zone-size would 
be directly related to the inclusion size, D such 
that R ~ D .  It is therefore, hypothesized that K e 

will increase with increasing inclusion size. 
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It can also be argued that  if  inclusions remote 
from the surface of  the crack were to remain in 
their t ransformed state, their residual strain-energy 

would be greater relative to that of  those adjacent 
to the crack surface. Thus, the work-loss to the 

fracture process for remote inclusions would be 
less than that  for inclusions adjacent to the crack 
surfaces; that  is, adjacent inclusions would contri- 
bute more to the fracture toughness than would 
remote inclusions. 
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